runtest Documentation
Release 2.3.4

Radovan Bast

Jun 22, 2023

About

9

Motivation

Audience

Similar projects

General tips

How to hook up runtest with your code
Example test script

Run function arguments

Filter options

Command-line arguments

10 Generated files

11 Contributing

12 Branching model

11

13

17

19

23

25

27

29

runtest Documentation, Release 2.3.4

Numerically tolerant end-to-end test library for research software.

This documents the latest code on the main branch. The release-1.3. z code is documented here: http://runtest.
readthedocs.io/en/release-1.3.z/.

About 1

http://runtest.readthedocs.io/en/release-1.3.z/
http://runtest.readthedocs.io/en/release-1.3.z/

runtest Documentation, Release 2.3.4

2 About

CHAPTER 1

Motivation

1.1 Scope

When testing numerical codes against functionality regression, you typically cannot use a plain diff against the refer-
ence outputs due to numerical noise in the digits and because there may be many numbers that change all the time and
that you do not want to test (e.g. date and time of execution).

The aim of this library is to make the testing and maintenance of tests easy. The library allows to extract portions of
the program output(s) which are automatically compared to reference outputs with a relative or absolute numerical
tolerance to compensate for numerical noise due to machine precision.

1.2 Design decisions

The library is designed to play well with CTest, to be convenient when used interactively, and to work without trouble
on Linux, Mac, and Windows. It offers a basic argument parsing for test scripts.

runtest Documentation, Release 2.3.4

4 Chapter 1. Motivation

CHAPTER 2

Audience

2.1 Explain runtest in one sentence

Runtest will assist you in running an entire calculation/simulation, extracting portions for the simulation outputs, and
comparing these portions with reference outputs and scream if the results have changed above a predefined numerical
tolerance.

2.2 When should one use runtest?

* You compute numerical results.
* You want a library that understands that floating point precision is limited.
* You want to be able to update tests by updating reference outputs.

* You look for an end-to-end testing support.

2.3 When should one not use runtest?

* You look for a unit test library which tests single functions. Much better alternatives exist for this.

runtest Documentation, Release 2.3.4

6 Chapter 2. Audience

CHAPTER 3

Similar projects

* http://testcode.readthedocs.io: testcode is a python module for testing for regression errors in numerical (princi-
pally scientific) software.

http://testcode.readthedocs.io

runtest Documentation, Release 2.3.4

8 Chapter 3. Similar projects

CHAPTER 4

General tips

4.1 How to add a new test

Test scripts are python scripts which return zero (success) or non-zero (failure). You define what success or failure
means. The runtest library helps you with basic tasks but you are free to go beyond and define own tests with arbitrary
complexity.

4.2 Strive for portability

Avoid shell programming or symlinks in test scripts otherwise the tests are not portable to Windows. Therefore do
notuse os.system() or os.symlink (). Do not use explicit forward slashes for paths, instead use os.path.
join ().

4.3 Always test that the test really works

It is easy to make a mistake and create a test which is always “successful”. Test that your test catches mistakes. Verify
whether it extracts the right numbers.

4.4 Never commit functionality to the main development line without
tests

If you commit functionality to the main development line without tests then this functionality will break sooner or
later and we have no automatic mechanism to detect it. Committing new code without tests is bad karma.

runtest Documentation, Release 2.3.4

4.5 Never add inputs to the test directories which are never run

We want all inputs and outputs to be accessile by the default test suite. Otherwise we have no automatic way to detect
that some inputs or outputs have degraded. Degraded inputs and outputs are useless and confusing.

10 Chapter 4. General tips

CHAPTER B

How to hook up runtest with your code

The runtest library is a low-level program-independent library that provides infrastructure for running calculations and
extracting and comparing numbers against reference outputs. The library does not know anything about your code.

In order to tell the library how to run your code, the library requires that you define a configure function which defines
how to handle a list of input files and extra arguments. This configure function also defines the launcher script or
binary for your code, the full launch command, the output prefix, and relative reference path where reference outputs
are stored. The output prefix can also be None.

Here is an example module runtest_config.py which defines such a function:

def configure (options, input_files, extra_args):
mmwmn
This function is used by runtest to configure runtest
at runtime for code specific launch command and file naming.

mmon

from os import path
from sys import platform

launcher = 'pam'
launcher_full_path = path.normpath (path.join(options.binary_dir, launcher))

(inp, mol) = input_files
if platform == "win32":
exe = 'dirac.x.exe'
else:
exe = 'dirac.x'
command = []
command. append ('python '.format (launcher_full_path))
command.append ('-—dirac= '.format (path.join (options.binary_dir, exe)))
command.append ('—-—noarch ——-nobackup'")
command. append ('-—inp= ——mol= '.format (inp, mol))

if extra_args is not None:

(continues on next page)

11

runtest Documentation, Release 2.3.4

(continued from previous page)

command.append (extra_args)

full_command = ' '.join (command

inp_no_suffix
mol_no_suffix

= path.splitext (i
path.splitext (m

]

output_prefix

'resu

relative_reference_path

return launcher, full_command,

'.format (inp_no_suffix,

)

np) [0]
ol) [0]

mol_no_suffix)
1t!

output_prefix, relative_reference_path

The function is expected to return

relative_reference_path.

launcher, full_command, output_prefix, and

12

Chapter 5. How to hook up runtest with your code

CHAPTER O

Example test script

Let us consider a relatively simple annotated example.

First we import modules that we need (highlighted lines):

#!/usr/bin/env python

provides os.path. join
import os

provides exit
import sys

we make sure we can import runtest and runtest_config
sys.path.append(os.path. join(os.path.dirname(file), '.."))

we import essential functions from the runtest library
from runtest import version_info, get_filter, cli, run

this tells runtest how to run your code
from runtest_config import configure

we stop the script if the major version is not compatible
assert version_info.major ==

construct a filter 1list which contains two filters
£ =1
get_filter (from_string="'@ Elements of the electric dipole',
to_string="'d anisotropy',
rel_tolerance=1.0e-5),
get_filter (from_string='xxxxxx***%x%x*x Expectation values',
to_string='s0 = T : Expectation value',
rel_tolerance=1.0e-5),

invoke the command line interface parser which returns options

(continues on next page)

13

runtest Documentation, Release 2.3.4

(continued from previous page)

options = cli()

ierr = 0
for inp in ['PBEOgraclB94.inp', 'GLLBsaopLBalpha.inp']:
for mol in ['Ne.mol']:
the run function runs the code and filters the outputs
ierr += run(options,
configure,
input_files=[inp, mol],
filters={'out': f})

sys.exit (ierr)

Then we construct a list of filters. We can construct as many lists as we like and they can contain as many filters as we
like. The list does not have to be called “f”’. Give it a name that is meaningful to you.

#!/usr/bin/env python

provides os.path.join
import os

provides exit
import sys

we make sure we can import runtest and runtest_config
sys.path.append(os.path. join(os.path.dirname(file), '.."))

we import essential functions from the runtest library
from runtest import version_info, get_filter, cli, run

this tells runtest how to run your code
from runtest_config import configure

we stop the script if the major version is not compatible
assert version_info.major ==

construct a filter 1list which contains two filters
£ =1
get_filter (from_string="'@ Elements of the electric dipole',
to_string='@ anisotropy',
rel_tolerance=1.0e-5),
get_filter (from_string='xxxxxx***x*x*x*x Expectation values',
to_string='s0 = T : Expectation value',
rel_tolerance=1.0e-5),

invoke the command line interface parser which returns options
options = cli()

ierr = 0
for inp in ['PBEOgraclLB94.inp', 'GLLBsaopLBalpha.inp']:
for mol in ['Ne.mol']:
the run function runs the code and filters the outputs
ierr += run(options,
configure,
input_files=[inp, mol],

(continues on next page)

14 Chapter 6. Example test script

runtest Documentation, Release 2.3.4

(continued from previous page)

filters={'out': f})

sys.exit (ierr)

After we use the command line interface to generate options, we really run the test. Note how we pass the configure
function to the run function. Also note how we pass the filter list as a dictionary. If we omit to pass it, then the
calculations will be run but not verified. This is useful for multi-step jobs. From the dictionary, the library knows that
it should execute the filter list “f” on output files with the suffix “out”. It is no problem to apply different filters to
different output files, for this add entries to the filters dictionary.

15

runtest Documentation, Release 2.3.4

16 Chapter 6. Example test script

CHAPTER /

Run function arguments

The run function has the following signature:

def run (options,
configure,
input_files,
extra_args=None,
filters=None,
accepted_errors=None) :

options is set by the command line interface (by the user executing runtest).
configure is specific to the code at hand (see the Example test script).

input_files contains the input files passed to the code launcher. The data structure of input_files is set by
the configure function (in other words by the code using runtest).

There are three more optional arguments to the run function which by default are set to None:

extra_args contains extra arguments. Again, its data structure of is set by the configure function (in other
words by the code using runtest).

filters is adictionary of suffix and filter list pairs and contains filters to apply to the results. If we omit to pass it,
then the calculations will be run but not verified. This is useful for multi-step jobs. See also the Example test script.
If the output_prefix in the configure function is set to None, then the filters are applied to the file names
literally.

17

runtest Documentation, Release 2.3.4

18 Chapter 7. Run function arguments

CHAPTER 8

Filter options

8.1 Relative tolerance

There is no default. You have to select either relative or absolute tolerance for each test when testing floats. You cannot
select both at the same time.

In this example we set the relative tolerance to 1.0e-10:

get_filter (from_string='Electronic energy',
num_lines=8,
rel_tolerance=1.0e-10)

8.2 Absolute tolerance

There is no default. You have to select either relative or absolute tolerance for each test when testing floats. You cannot
select both at the same time.

In this example we set the absolute tolerance to 1.0e-10:

get_filter (from_string='Electronic energy',
num_lines=8,
abs_tolerance=1.0e-10)

8.3 How to check entire file

By default all lines are tested so if you omit any string anchors and number of lines we will compare numbers from
the entire file.

Example:

19

runtest Documentation, Release 2.3.4

’get_filter(rel_tolerancezl.Oeflo)

8.4 Filtering between two anchor strings

Example:

get_filter (from_string="'@ Elements of the electric dipole',
to_string='@ anisotropy',
rel_tolerance=1.0e-10)

This will extract all floats between these strings including the lines of the strings.

The start/end strings can be regular expressions, for this use from_re or to_re. Any combination containing
from_string/from_re and to_string/to_re is possible.

8.5 Filtering a number of lines starting with string/regex

Example:

get_filter (from_string='Electronic energy',
num_lines=8, # here we compare 8 lines
abs_tolerance=1.0e-10)

The start string can be a string (from_string) or a regular expression (from_re). In the above example we extract and
compare all lines that start with ‘Electronic energy’ including the following 7 lines.

8.6 Extracting single lines

This example will compare all lines which contain ‘Electronic energy’:

get_filter(string='Electronic energy',
abs_tolerance=1.0e-10)

This will match the string in a case-sensitive fashion.

Instead of single string we can give a single regular expression (re).

get_filter(re='Electronic energy',
abs_tolerance=1.0e-10)

Regexes follow the Python syntax. For example, to match in a case-insensitive fashion:

get_filter(re=r' (?i)Electronic energy',
abs_tolerance=1.0e-10)

It is not possible to use Python regex objects directly.

8.7 How to ignore sign

Sometimes the sign is not predictable. For this set ignore_sign=True.

20 Chapter 8. Filter options

https://docs.python.org/3/library/re.html#regular-expression-syntax

runtest Documentation, Release 2.3.4

8.8 How to ignore the order of numbers

Setting ignore_order=True will sort the numbers (as they appear consecutively between anchors, one after an-
other) before comparing them. This is useful for tests where some numbers can change place.

8.9 How to ignore very small or very large numbers

You can ignore very small numbers with skip_below. Default is 1.0e-40. Ignore all floats that are smaller than this
number (this option ignores the sign).

As an example consider the following result tensor:

3716173.43448289 0.00000264 -0.00000346
-0.00008183 75047.79698485 0.00000328
0.00003493 -0.00000668 75047.79698251
0.00023164 -153158.24017016 -0.00000493
90142.70952070 -0.00000602 0.00000574
0.00001946 -0.00000028 0.00000052
0.00005844 -0.00000113 -153158.24017263
-0.00005667 0.00000015 -0.00000022
90142.70952022 0.00000056 0.00000696

The small numbers are actually numerical noise and we do not want to test them at all. In this case it is useful to set
skip_below=1.0e-4.

Alternatively one could use absolute tolerance to avoid checking the noisy zeros.

You can ignore very large numbers with skip_above (also this option ignores the sign).

8.10 How to ignore certain numbers

The keyword mask is useful if you extract lines which contain both interesting and uninteresting numbers (like timings
which change from run to run).

Example:

get_filter (from_string='no. eigenvalue (eV) mean-res.',
num_lines=4,
rel_tolerance=1.0e-4,
mask=[1, 2, 31])

Here we use only the first 3 floats in each line. Counting starts with 1.

8.8. How to ignore the order of numbers 21

runtest Documentation, Release 2.3.4

22

Chapter 8. Filter options

CHAPTER 9

Command-line arguments

9.1 -h, —help

Show help message and exit.

9.2 -b BINARY_DIR, —binary-dir=BINARY_DIR

Directory containing the binary/launcher. By default it is the directory of the test script which is executed.

9.3 -w WORK_DIR, —work-dir=WORK_DIR

Working directory where all generated files will be written to. By default it is the directory of the test script which is
executed.

9.4 - LAUNCH_AGENT, -launch-agent=LAUNCH_AGENT

Prepend a launch agent command (e.g. “mpirun -np 8” or “valgrind —leak-check=yes”). By default no launch agent is
prepended.

9.5 -v, —verbose

Give more verbose output upon test failure (by default False).

23

runtest Documentation, Release 2.3.4

9.6 -s, —skip-run

Skip actual calculation(s), only compare numbers. This is useful to adjust the test script for long calculations.

9.7 -n, —no-verification

Run calculation(s) but do not verify results. This is useful to generate outputs for the first time.

24 Chapter 9. Command-line arguments

cHAaPTER 10

Generated files

The test script generates three files per run with the suffixes “.diff”, “filtered”, and “.reference”.
The “ filtered” file contains the extracted numbers from the present run.
The “.reference” file contains the extracted numbers from the reference file.

If the test passes, the “.diff” file is an empty file. If the test fails, it contains information about the difference between
the present run and the reference file.

25

runtest Documentation, Release 2.3.4

26

Chapter 10. Generated files

cHAPTER 11

Contributing

Yes please! Please follow this excellent guide: http://www.contribution-guide.org. We do not require any formal
copyright assignment or contributor license agreement. Any contributions intentionally sent upstream are presumed

to be offered under terms of the Mozilla Public License Version 2.0.
Methods, and variables that start with underscore are private.

Please keep the default output as silent as possible.

11.1 Where to contribute

Here are some ideas:
* Improve documentation
* Fix typos
» Make it possible to install this package using pip
* Make this package distributable via PyPI

27

http://www.contribution-guide.org

runtest Documentation, Release 2.3.4

28

Chapter 11. Contributing

cHAPTER 12

Branching model

We follow the semantic branching model: https://dev-cafe.github.io/branching-model/

29

https://dev-cafe.github.io/branching-model/

	Motivation
	Audience
	Similar projects
	General tips
	How to hook up runtest with your code
	Example test script
	Run function arguments
	Filter options
	Command-line arguments
	Generated files
	Contributing
	Branching model

